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Abstract—Inter prediction is quite important for the modern
codecs to remove temporal redundancy. In this paper, we make
endeavors in generating artificial reference frames with previous
reconstructed frames for inter prediction, to offer a better choice
when the traditional block-wise motion estimation fails to find a
good reference block. Long-term temporal dynamics are tracked
during the whole coding process to generate more accurate
and realistic artificial reference frames. Specifically, we propose
a Memory-Augmented Auto-Regressive Network (MAAR-Net)
for frame prediction in video coding. MAAR-Net regresses the
current frame with two nearest frames via an auto-regressive
(AR) model to better capture the main spatial and temporal
structures. The AR regression coefficients are generated based
on adjacent frame information as well as the long-term motion
dynamics accumulated and propagated by a convolutional Long
Short-Term Memory (LSTM). To generate the target frame
with higher quality, a quality attention mechanism is introduced
for the temporal regularization between different reconstructed
frames. With the well-designed network, our method surpasses
HEVC on average 4.0% BD-rate saving and up to 10.6% BD-rate
saving for the luma component under the low-delay configuration.

Index Terms—High Efficient Video Coding (HEVC), inter
prediction, deep learning, Memory-Augmented Auto-Regressive
Network.

I. INTRODUCTION

With the increasing demand for the video of higher quality
and resolution, recent video compression coding standards like
MPEG-4 AVC/H.264 [1] and High Efficient Video Coding
(HEVC) [2] are developed to further improve coding effi-
ciency. In these codecs, intra prediction and inter prediction
are leveraged to squeeze out spatial and temporal redundancy
among video frames, to reduce the bits to be coded in
the successive entropy coding stage. In the stage of inter
prediction, for a block which is to be coded (to-be-coded
block), the block-wise motion is estimated by searching for
reference blocks from the previous encoded frames. Based on
the estimated motion vectors, motion compensation is applied
on the reference blocks, and then the residue blocks can be
obtained by removing one of the compensated reference blocks
from the to-be-coded block. However, this mechanism might
not always be effective. When there are large and irregular
motions, e.g., rotation or fast moving objects, the block-wise
motion estimation will fail to capture large and fine motion
patterns, which can lead to large residues after the motion
compensation.
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Recently, deep learning has shown excellent modeling ca-
pacities in both high-level computer vision tasks and low-
level vision fields, including image restoration [15, 17], image
interpolation [18, 20], etc. Naturally, deep learning techniques
have also been introduced to improve the coding efficiency
of modern codecs in [21–25]. Some methods have been pro-
posed to enhance the inter prediction by generating additional
artificial reference frames with previous reconstructed frames
under the low-delay (LD) configuration. [6] first explored to
generate a reference frame by Laplacian Pyramid of Genera-
tive Adversarial Networks (LAPGAN) [8]. Prednet proposed
in [9] was used in [7] to generate an artificial frame with more
reconstructed frames in a progressive manner. The adaptive
convolution proposed in [3, 4] was used in [5] with additional
side information, i.e. temporal index, to achieve more BD-rate
saving.

However, there are several neglected issues in previous
works. First, most of these works only take two reconstructed
frames as the input to the prediction model. Without the
perception for a long time span of motions, the predicted
frame might not be desirable with blurred details and artifacts
caused by the inaccurate frame regression and improper fusion.
Second, although the information of more frames is included
in [7], it just works in a sliding windows way. That is, only the
nearest four successive frames are perceived by taking them
as the input and to predict the target frame in a progressive
manner. Consequently, the temporal receptive field is still
limited. Moreover, the progressive procedure also multiplies
the model complexity. Third, in the video coding scenario, the
information of the motion and content of each reconstructed
frame is different. Thus, different frames contribute to the
target frame differently. Existing methods do not pay attention
to this and treat the information of all reconstructed frames in
an equal way.

In this paper, we propose a deep network to perform inter-
prediction in a frame recurrent way. It takes only two frames
at a time and is capable to utilize the long-term information
of all previous frames via the convolutional LSTMs effi-
ciently. Specifically, a Memory-Augmented Auto-Regressive
network (MAAR-Net) is built. On one hand, since the vast
majority of the most correlated video contents are in the most
nearby reference frames, MAAR-Net regresses the current
frame with only two nearest frames via an auto-regressive
(AR) model to better capture the main spatial and temporal
structures. On the other hand, to perceive the long time
span of motions, the auto-regressive coefficients, which decide
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Fig. 1. Architecture of the Memory-Augmented Auto-Regressive Network (MAAR-Net). The network uses an auto-encoder as the feature extraction module
based on previous frames. The auto-regressive coefficients are generated by short-term temporal redundancy and long-term temporal dynamics. The quality
attention is injected for better prediction. A ConvLSTM-based memory update module is proposed to guide the coefficient generation to make full use of the
information of all previous frames during the whole coding process.

how two adjacent frames are combined, are generated via a
convolutional LSTM network. In this way, our MAAR-Net
can predict the current frame with a comprehensive consider-
ation on both more correlated reconstructed frames and long-
term temporal dynamics. We further consider on the coding
scenario and make efforts in two aspects. First, the residue
image between the reconstructed frame and the generated
frame serves as the input of the LSTM for AR coefficients
generation. Second, for a better quality of the target frame,
we focus on reconstructed frames containing more information
by introducing attention maps as the frame quality guidance.
With the well-designed MAAR-Net that makes good use of
both short-term temporal redundancy and long-term motion
perception, as well as considerations into the coding scenario,
our method surpasses HEVC on average 4.0% BD-rate saving
and up to 10.6% BD-rate saving for the luma component under
the low-delay configuration.

II. MEMORY-AUGMENTED AUTO-REGRESSIVE NETWORK

A. Auto-Regressive Model

The auto-regression (AR) model is one of the most widely
used statistical models to describe time-series data. It predicts
the value at the current time-step with the observations from
previous time-steps and is used in [16–20] to tackle some
computer vision tasks. The basic linear auto-regressive model
can be formulated as follows,

It =

p∑
i=1

at−iIt−i + εt, (1)

where {It} is a time series, p stands for the order of the model,
i.e. the length of the time steps for predicting It. {εt} is a
noise sequence representing the new information at the time-
step t. at is the AR coefficients denoting what percentage of
the current frame can be explained by previous frames.

Video frames are intrinsically 2D time series, and by nature
can be modeled in an auto-regressive way. First, video frames
are continuous in the temporal dimension. Thus, it is possible
to predict the consequent frame based on previous frames.
Second, the most nearby frames are usually most correlated to

the current frame. Thus, we can only use p adjacent frames in
the AR model considering the short-term temporal redundancy.

Meanwhile, due to the existence of complex motions, at
might be changing rapidly even for adjacent video frames,
especially for the case including nonlinear motions. It is
difficult to describe the relationship of the continuous frames
by the AR model with constant at. That is to say, we hope
at is dynamically dependent on the given frames, especially
based on the related motion contexts. Therefore, we can regard
at as a function at(·). Besides, we also hope to use the
information out of the adjacent p frames, namely the long-
term temporal dynamics, which also show the global temporal
pattern and can facilitate the local temporal modeling. Hence,
at(·) should connect to the long-term modeling mechanism.
What’s more, in the coding process, the motion and content
information of different reconstructed frames might differ a
lot due to the quality of motion compensation or time-varying
quantization parameter (QP) values, etc. Thus, we embed the
quality attention modeling into at(·) for inter-prediction in the
video coding scenario. We split at(·) into Kt (·) and Mt (·),
where the former denotes the adaptive kernel generated based
on both the short-term redundancy and long-term dynamics,
and the latter models the quality attention, which performs
regularization by allocating larger linear blend weights to the
regions owning more information for better motion and content
quality of the target frame. Then an improved AR model,
namely the memory augmented AR model, is developed as
follows,

It =

p∑
i=1

It−i ⊗Ki(εt, γt)�Mi(γt), (2)

where γt stands for short-term redundancy extracted from
the previous input frames Xt−i. ⊗ denotes the adaptive
convolution and � is the pixel-wise weighted summation for
the regularization. εt stands for the long-term dynamics which
are aggregated from the information of all previous frames as
follows,

εt+1 = π(Rt, εt), (3)

where Rt is the residue image representing the difference
between the T -th frame generated by our network and the
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Fig. 2. Visual comparison of frames: (a) The original frame; (b) The reconstructed frame of the HEVC anchor; (c) The reconstructed frame of our method
with the artificial reference frame.

reconstructed T -th frame produced by the video codecs. In
this way, both the short-term redundancy and long-term tem-
poral dynamics make contributions to the temporal modeling.
Considering the memory and computation limitation, we set p
to 2, which helps achieve a good balance between prediction
quality and complexity.

B. Architecture of the Network

The architecture of our network as shown in Fig. 1 consists
of three main modules.

Feature Extraction. Considering that the most correlated
reference frames are the most nearby reference frames in
most cases, we apply an encoder-decoder structure to extract
features based on two previous coded frames. Larger receptive
fields can be achieved by continuous down-sampling and up-
sampling operations. Besides, we use skip connections from
the encoder to the decoder to bypass information at different
levels to make this module more aware of subtle motions.
The extracted feature γt encodes main spatial and temporal
structures of nearby adjacent frames.

Memory Augmented AR Regression. The AR model is
implemented in an adaptive convolutional way, where the
kernels are denoted by Ki(εt, γt). It can be seen that both the
long-term dynamic memory εt and the short-term redundancy
feature γt are used for the generation of the AR coefficients.
They jointly help the AR model make full use of both the
most correlated reconstructed frames and long-term temporal
dynamics. Besides, to perform the temporal regularization,
we apply the attention-guided weighted-summation according
to [12] with the attention map Mi(γt) generated from the
extracted feature γt.

Memory Update Module. This module is the key com-
ponent for accumulating and propagating of the long-term
memory, which is used to perceive the long-term temporal
dynamics by a Convolution LSTM (ConvLSTM) [10] module.
We choose the generation residues as the input to update the
memory based on the consideration of the coding scenario
and predicted errors. During the whole coding process, a
ConvLSTM network will maintain a memory based on the
generation residues as illustrated in Fig. 1. Here, for simplicity,
we only show the process of two consecutive frame gener-
ations. The generation residue between the generated frame
and the reconstructed frame will be calculated and fed to the
ConvLSTM. Then the updated hidden state will be used for
the generation of the AR coefficients at the next time-step.

C. Integration into HEVC

There are two reference frame lists where previous encoded
frames will be placed as reference frames under the LD
configuration. We replace the farthest reference frame from
the to-be-coded frame in each reference frame list with the
generated frame Ît as a new reference frame. The generated
frame Ît will be kept until this frame has been encoded. Then
the generation residue Rt is calculated to update the hidden
state of the ConvLSTM module. This process will be repeated
until all frames of this video are encoded.

D. Training details

We choose the Vimeo-90K dataset [11] as our training data.
The dataset has 89,800 clips with a resolution of 448 × 256.
Each clip has 7 consecutive frames. We use 87,902 clips as the
training data and the rest as the validation data. We compress
all the data with HEVC under the all-intra configuration with
random QP values ranging from 1 to 51 to simulate the
quality degradation due to quantization. In the coding process,
only the reconstructed frames rather than the lossless frames
are available, which will be used for the calculation of the
generation residues. In the training stage, we calculate the
generation residues with the degraded frames rather than the
ground truth to make the training process closer to the coding
process. For the frames of each clip, the QP is set to be the
same and the degraded frames are denoted as I1 to I7. For
each clip, we will perform five consecutive generations for
I3 to I7 with the results denoted by Î3 to Î7. The generation
residues, denoted by R3 to R7, will be used to update the
memory according to the way described above. We choose the
sum of absolute transformed difference (SATD) loss function
proposed in [14, 21] as the loss function.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

During the training stage, every image is randomly cropped
into a 128 × 128 patch while randomly flipped both hori-
zontally and vertically for data augmentation. The network
is implemented on Pytorch and AdaMax [13] is used as the
optimizer with β1 = 0.9, β2 = 0.999. The batch size is set
to 16 and the learning rate is firstly set to 10−3 while turned
down gradually until convergence. We train our network for
50 epochs on an NVIDIA GTX 1080 GPU with 11GB RAM.

The proposed method is tested on HEVC reference software
HM 16.20 under the low-delay configuration. BD-rate is used
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TABLE I
BD-RATE REDUCTION OF THE PROPOSED METHOD COMPARED TO HEVC.

Class Sequence
BD-rate

Y U V

Class B

Kimono -4.3% -10.6% -3.6%

BQTerrace -1.7% -3.1% -2.2%

BasketballDrive -1.3% -3.3% -2.2%

ParkScene -2.3% -4.9% -3.5%

Cactus -5.9% -9.6% -5.6%

Average -3.1% -6.3% -3.4%

Class C

BasketballDrill -2.3% -8.2% -6.2%

BQMall -4.8% -8.7% -7.2%

PartyScene -2.8% -4.5% -5.7%

RaceHorsesC -0.4% -0.9% -1.0%

Average -2.6% -5.6% -5.0%

Class D

BasketballPass -4.4% -7.9% -5.5%

BlowingBubbles -3.3% -4.8% -7.2%

BQSquare -4.3% -1.2% -3.0%

RaceHorses -1.0% -2.6% -2.4%

Average -3.2% -4.1% -4.5%

Class E

FourPeople -10.6% -6.8% -5.5%

Johnny -6.1% 5.9% 2.6%

KristenAndSara -7.9% -3.0% -0.1%

Average -8.2% -1.3% -1.0%

All Sequences Overall -4.0% -4.6% -3.6%

to measure the rate-distortion. The QP values are set to 22,
27, 32 and 37, and we only train one model for all QPs. We
also compare our method with the method proposed in [5].
For simplicity, we call it DFP.

B. Experimental Results and Analysis

Table I shows the BD-rate reduction of our method in class
B, C, D and E under the LD configuration. Our method has
obtained on average 4.0% BD-rate saving and up to 10.6%
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Fig. 3. The R-D curve of the sequence FourPeople for the luma component
under the LD configuration.

BD-rate saving for the test sequence FourPeople. The R-D

TABLE II
BD-RATE REDUCTION COMPARISON BETWEEN DFP AND MAAR-NET.

Class DFP Ours

Class B -2.1% -3.1%
Class C -2.2% -2.6%
Class D -2.2% -3.2%
Class E -5.8% -8.2%

All Sequences -2.8% -4.0%

curve of this sequence is shown in Fig. 3. We also show
the reconstructed frame of the HEVC anchor which has more
artifacts compared to the reconstructed frame of our method
in Fig. 2.

For the purpose of further verification, we additionally
compare our MAAR-Net with DFP [5], which similarly
introduces a frame prediction method using a deep neural
network to video coding but fails to consider the long-term
temporal dynamics. The BD-rate reduction comparison of the
Y component between the two methods is shown in Table
II. Our method is superior to their method in all classes and
obtains 1.2% more BD-rate reduction on average.

C. Verification of the Long-Term Temporal Dynamics

In order to verify the utility of the proposed propagation
of the long-term temporal dynamics, we do this ablation
study with the modification to prevent the process of the
propagation. Every time before the generation of a frame, we
will reset the ConvLSTM’s hidden state to zero to erase the
previous memory. The results are shown in Table III. With
the propagation of the long-term temporal dynamics, we can
obtain on average 0.5% more BD-rate reduction.

TABLE III
BD-RATE REDUCTION COMPARISON FOR THE VERIFICATION OF THE

LONG-TERM TEMPORAL DYNAMICS.

Class w/o dynamics with dynamics

Class B -3.0% -3.1%
Class C -2.2% -2.6%
Class D -2.5% -3.2%
Class E -7.2% -8.2%

All Sequences -3.5% -4.0%

IV. CONCLUSION

In this paper, we propose a Memory-Augmented Auto-
Regressive Network for frame recurrent inter prediction. By
applying the auto-regressive model to regress the current frame
with the long-term temporal dynamics, both correlated recon-
structed frames and a long time span of temporal information
are taken into consideration. The attention map works as
the frame quality guidance and benefits the generation with
better quality. Experimental results show that our method has
obtained on average 4.0% BD-rate saving on the test sequences
compared with HEVC.
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